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Abstract--In this investigation, an equation is theoretically developed to predict the collapse rate of 
spherical-cap shaped bubbles. Heat transfer at the top surface and in the wake of the bubble is determined. 
The comparison between the theoretical predictions and the experimental measurements of spherical-cap 

shaped steam bubbles condensing in subcooled water is satisfactory, 

1. INTRODUCTION 

AN EXTENSIVE amount of work has been carried out 
into the fluid mechanics and mass transfer of large 
bubbles, primarily in connection with underwater 
explosions, fluldized beds, and processing of liquid 
metals, and much of this has been the subject of a 
comprehensive review in a book on bubbles, drops 
and particles by Clift et al. [1]. But, there is a limited 
amount of experimental data and theoretical studies 
on condensation of spherical-cap shaped bubbles. 

Danckwerts [2] introduced a surface renewal model 
for mass transfer at the wake of a spherical-cap bubble 
in the form 

km ~ Ds (1) 

where D is the diffusion coefficient and s the surface 
renewal rate. Lamont and Scott [3], assuming that 
mass transfer is controlled by small eddies, obtained 
a value of the average mass transfer coefficient as 

/D\O5 
k , ~ v  ) (av) °'2s (2) 

where e is the rate of  energy dissipation by turbulence 
per unit mass. Coppus [4] estimated ¢ from the total 
energy dissipation of the bubble, F, as follows : 

F = Drag- U = (p~gVb)U. (3) 

He assumed that all the energy is dissipated in the 
closed wake behind the bubble and determined the 
total energy dissipation rate per unit mass as 

F gVbU oU 
eT = p,  vw = v .  vw/vb (4) 

He suggested that the energy dissipated by turbulence 
was equal to the total energy dissipation rate times a 
function of the Reynolds number or 

_ 9U 
= ~Tf(Re) -- ~ f ( R e )  (5) 

where for a low Reynolds number (laminar wake flow) 
f(Re) = 0 and for a high Reynolds number (turbulent 
wake flow)f (Re) = !. 

2. T H E O R Y  

In some cases of the experimental data of steam 
bubbles condensing in subcooled water, it was 
observed that when a near spherical bubble detached 
from the orifice, it became slightly flattened at the rear 
of the bubble, passing through a hemispherical to a 
spherical-cap shape as illustrated in the collapse pat- 
tern shown in Fig. 1. 

When a spherical-cap bubble rises, with a constant 
velocity U, through a subcooled liquid, heat transfer 
will take place from the top of the bubble and in 
addition some heat transfer will take place by con- 
duction into the wake. 

If we consider that the spherical-cap bubble shown 
in Fig. 2 has a constant radius Ro and an angle 7, which 
decreases as collapse continues, we can, by assuming 
simplified potential flow over the spherical surface, 
determine the heat transfer from the top surface of 
the bubble. 

The convection of heat in the water flowing round 
a spherical-cap bubble is assumed to be given by 

~T OT uo OT {O'-T 2 ~,T'~ 
- - + u , ~ - r  + - -  ~ = l~2T_2 + r  ~ j (6) r 

where conduction in the tangential direction is 
assumed to be much smaller than that in the radial 
direction. Assuming the thickness of the thermal 
boundary layer in the water flowing around the 
bubbles to be small, the velocity in the radial direc- 
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FIG. 1. Impressions of collapse pattern of spherical-cap 
bubbles. 
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N O M E N C L A T U R E  

Ar surface area at the rear of  the bubble 
[m 2] 

C~ variable defined by equation (25) 
Cbv constant defined by equation (23) 
cp specific heat [J kg-  i K -  i] 
D diffusion coefficient [m 2 s-  i] 
Fo Fourier number, ~td/4R ~ 
g gravitational acceleration [m s-2] 
hf, specific enthalpy of evaporation [J kg-  t] 
Ja Jakob number, ptceAT/pshrg 
km mass transfer coefficient [m s -  i] 
Pe Peclet number, 2RU/~ 
Peo Peclet number, 2RoU/~ 
Q rate of  heat transfer from the bubble at 

time t [W] 
qo heat flux at angular position 0 on the 

surface of the bubble [W m-2] 
R bubble radius [m] 
Ro initial bubble radius [m] 
.~ bubble wall radial velocity, dR/dt  [m s- ~] 
Re Reynolds number, 2RU/v = 2RUp/p 
Reo Reynolds number, 2RoU/v 
r radial coordinate [m] 
s surface renewal rate Is- ~] 
T temperature [K] 
AT subcooling of water relative to steam [K] 
t time Is] 
U bubble rise velocity [m s -  t] 
u, velocity in the radial direction [m s -  t] 

uo 

Y 

Z 

velocity in the tangential direction 
[ m s - ' ]  
radial distance from the bubble surface, 
r -  R [m] 
dimensionless bubble volume, V/~nR3o. 

Greek symbols 
thermal diffusivity [m z s -  ~] 

ff dimensionless radius based on initial 
bubble radius, R/Ro 

7 polar angle from the vertical defining the 
base of  the spherical-cap bubble [rad] 

E rate of energy dissipation by turbulence 
per unit of  mass [W kg-~ or m'- s -3] 

er total rate ofenergy dissipation per unit 
of  mass [W kg- i  or m z s -s] 

0 polar angle from vertical [rad] 
v kinematic viscosity, p/p [m 2 s-  ~] 
p density [kg m -  5]. 

Subscripts 
b bubble 
f fluid, front 
1 liquid 
m mean 
T, t total 
v vapour 
w wake 
0 initial value. 

~ uid 

t Loyer 

R - R  o - constont  

FIG. 2. Theoretical model for collapse of  spherical-cap 
bubbles. 

tion u, and in the tangential direction uo in this layer 
are given by 

(7) 

Uo = ~Usin 0 (8) 

where y is the distance ( r -  R) from the bubble surface. 
If we neglect bubble radial velocity (i.e. /~ = 0), the 
velocity u, can be written as 

u, = - 3 U R ~  ° cos 0. (9) 

For these conditions, Ruckenstein [5] gave the heat 
flux through the liquid boundary layer at angle 0 as 

] URoa sin 2 0 
qo = ceplAT • 00) 
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Thus, the heat transferred at the upper (front) surface, 
between 0 = 0 and 7, is given as 

Qrf = fi: 2nR°2 sin 0 qo dO (i 1) 

2rcR~c,p,arWRo~ [' sin s 0_(:10 
= J(~,,UR3o) Jo (l-cos 0+ ~cos s 0)':~" 

(12) 

Let 

y = l - c o s  0+  ~cos s 0 (13) 

• d y = ( s i n 0 - c o s  2 0 s i n 0 ) d 0 = s i n  30d0. (14) 

Hence 

fi: sin s 0 d0 
(23 - c o s  0 +  ~3 cos s 0),i2 

= 2 ( ] - c o s ~ +  lscosS'f)'/L (15) 

Therefore 

. /[2~'~ R3ocep,ATUct ~.z 
Q~.r = - ~ 1 / " ~ - /  ~ :%--COS ~ +  ICOS s 7) i/2 

V\  / x/(~URo) 

(16) 

.'. Q :  = 6 (c,,piAT) Pe~ iz ~ R o ( i - c o s  ? 

+ 13 cos3 ?)t/2. (17) 

In addition to this heat transferred at the top surface 
of the bubble, heat may also be conducted into the 
water in the wake, and this can be determined by using 
a method similar to that of  Coppus [4]. 

Since we have turbulent flow, equation (5) becomes 

#U 
e = V . / V  b. (18) 

Substituting this in equation (2) and inserting a con- 
stant of proportionality of 0.10 gives 

y. 
k,~ = 0.10 \V.lVb] (19) 

or  

k: :,v.'::v.- (v,?2, 
D :O.lOt~ ) t ~U--~) Re °'75 (20) \ v . /  • 

By using an analogous heat transfer relationship 
which substitutes h / p t ' c  p for the mass transfer 
coefficient km and the thermal diffusivity ~ for the 
diffusion coefficient D, we can write 

,. .,o,:,,,y2, (, ,) , .  
p, ce=O.lOt-~) \~-0~ ] Re °'75 ~ (21) 

where 

• hR =CbpeO.5OReO.2~(Vby  25 
"" p,c/~ \ V . ]  (22) 

/ gR ~o.2s 
C. = 0 . 1 0 t ~ - ~ )  . (23) 

Assuming a closed spherical wake 

nR s ( l - c o s  ? + c°-3~ ~--7- ) 
G C, 
G = [ . cos s :,'X = ~-c 

s s I~ 2 - c ° s  ~ * - T - -  ) ' : t R  - n R  s 

(24) 

where 

COS 3 
C, = l - c o s ~ +  3 (25) 

Hence, equation (22) can be written as 

hR = Cb PeO.S ReO.2, ( C, y .2 ,  
p,c,---~ \ ] - C , , I  " (26) 

Thus, heat transferred to the wake at the rear of the 
bubble is expressed as 

Q.n = h A , A T  = hATn(R  sin y)2 (27) 

where A, is the surface area at the rear of the bubble• 

• ". Q.n = Cbp:b nATR2 sin2 

[ C, y"-' 
x - ~ P e  °'5 Re °'2s \ ~ _ C b ]  . (28) 

Since R = Ro -- constant, Pe ~ Peo, Re ~ Reo 

Q.n = nCb(cpp,aT) 

( C, y-" 
x Root Pe °'s Repl 2s sin 2 ? ~ )  . (29) 

Combining equations (17) and (29) the total heat 
transfer from the bubble is obtained 

Q, = Q-:r + Q.n 

( ,/(D o ,  Q, = (c,,,p,AT) Pe °'5 Ro,v 6 -~ C, 

C °''5 
+nCb Re~ 2s sin z ? (~_--~00.:<j. (30) 

An energy balance on the steam bubble states that 
the total heat transferred from the bubble at time t is 
given as 

dV 
Q, = - h~,p,, ~ -  (31) 

where d V/dt is the rate of change of volume of the 
bubble. 

Thus, equating equations (30) and (31) 
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= o,(,/(.) 3 o, dV - 4 J a  Peo 6 RoC = 
dFo 3 

co,, ,~ 
+ ~Cb Re °'2s R3o sin 27 (~_ C,)O.2,') (32) 

where 

#t 
F o =  

4Ro z" 

Let 

( w )  z = ~ = ~-f~o~ = ~ ~-cosv+ = ~ c ,  

(33) 

I 
• dZ = ~ d Y .  

Hence, equation (32) can be written as 

( j ( ; ) . ,  d--~o = - 4 J a  Pe °'s 6 ]~ 

+, ,cb Re g.'' I c o.'' ]~  sin2 Y (_~ _-'~,)o.2s" ] (34) 

• d-~o = d Z  -4Ja Pe°sC~-~s 

Z o.z5 '~ 
+ (~c,, r e g " )  sin ~ ~'(1 - ~ " : ) "  (35) 

Integrating gives 

1 
Fo= 

4Ja Pe °J 

x ~ o:5 sin2 Y Z°2s" (36) 
o z ° 'S+ ( lCb  Reo" ) - ~ - - - Z - ~  

From equation (33) 

dZ = 4%in 3 7 dT. (37) 

Therefore, equation (36) can be written in terms of 
as 

3 
Fo = 

16Ja Pe°o "s 

x f i :  sin3 7 dy 
3 ~3 /3  \0.25 sin z ' C °'25 " 

0 5 ,} 0 .23  ¥ I c,. +(,c~ neo )~) 
2 x/~ (I ,,c;)o,, 

(38) 

From the definition of Z in equation (33), the dimen- 
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FIG. 3. Comparison of collapse data with the theory (+, x 
and • denote three different bubbles at the same conditions). 

sionless radius p can be calculated as 

= \~/ - -  . 

(39) 
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For  a given experimental condition the Jakob 
number, Peclet number, Reynolds number and Cb 
are known. For  a given angle, 7, equation (38) gives 
the Fourier number (Fo) and equation (39) deter- 
mines the value of ft. 

Equation (35) can be rewritten as 

( ~  ' / Z \ ° ' 2 ' \  

dFo 

(40) 

where 

• zl "~ ~4Cb Re 0"25. 

When heat transfer at the rear of the bubble is 
neglected A = 0 and equation (40) reduces to 

dZ  12 
= ~/--rcJa Pe °'s Z °'5. (41) dFo 

Hence 

o r  

/ 6 
Z =  l - - - J a  Pe °'s Fo 

d. 
(42) 

f l = l l - ~ J c i P e ° ' S F o l  2/3 (43) 

which is the equation given by Isenberg et al. [6] for 
the collapse of" spherical bubbles rising freely with 
negligible bubble radial velocity. 

3. COMPARISON OF THEORY WITH 
EXPERIMENTAL DATA 

A simulation program was used to calculate and 
draw the fl vs Fo curve according to equations (38) 
and (39). The theory is compared with our exper- 
imental data [7] where spherical-cap shaped steam 

bubbles condensing in subcooled water are chosen 
(Figs. 3(a)-(c)). Since initial bubble radius (Ro) and 
approximate bubble rise velocity (U) are known, Reo, 
Peo and Cb are calculated according to the definitions 
in the text. The theory agrees with the data reasonably 
well. 

4. CONCLUSIONS 

In the tests, especially at higher Jakob numbers, the 
collapse rate is lower during the early stages of col- 
lapse than the predicted collapse rate, but later on the 
rate of collapse increases so that the final collapse time 
shows reasonable agreement with that predicted, and 
in a few cases gives a faster collapse than the predicted 
rate. This collapse pattern may be due to the effect of 
the bubble condensation giving some heating of the 
water near the orifice and so reducing the effective 
driving force for condensation, while increased bubble 
distortion leads to a more rapid increase in the col- 
lapse rate towards the later stages of collapse. 
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CONDENSATION DE BULLES A SOMMET SPHERIQUE 

R~sumt--Une 6quation est 6tabilie par voie th6orique pour pr6dire le temps de coUapsus des builes dont 
la partie sup6rieure est sph6rique. On d6termine le transfert de chaleur ~i la surface sup6rieure et dans le 
sillage de la bulle. La comparaison des calculs et des mesures exp6rimentales de condensation des buUes 

de vapeur d'eau ~i sommet sph6rique dans de reau sous-refroidie est satisfaisante. 

KONDENSATION VON SCHIRMBLASEN 

Zusammenfassung--Eine Oleichung zur Berechnung der Kondensationsgeschwindigkeit von Schirmblasen 
wird theoretisch entwickelt. Der Wirmefibergang an der Oberseite und im Nachlauf der Blase wird 
bestiramt. Die Obereinstimmung mit Versuchsergebnissen an Schirmblasen aus Wasserdampf, die in 

unterkfihltem Wasser kondensieren, ist befriedigend. 

KOH~]EHCAHH,q IIY3blPbKOB B OOPME C®EPHqECKHX KOJIHAqKOB 

AmoTamm--TeopeTwmam nuBons'rca ypasnem~¢ ~ pacqeTa csopoc-rs cx.~onusaM~ ny~up~,sos s 
OpopMe c ~ e c s ~ x  xonna,mon. Onpe~e~en Tennonepeuoc y sepxHeR nosepxHocrx H n cne.ne n ~ u -  
pbEa. TeopeTwmc~me pac~cru y~tos~eTSopa'renbHo cor~cylo'rcs c 3Ecnep~v[em'anbm,~m x3Mepe- 
Hm~/X EOF,~eHCHpyIoumxcR n nenorpeTog Bone ny3upb~os napa, m,/emumx c~op~/ c~xqec ,~x  

EoJlnaqEoB. 


